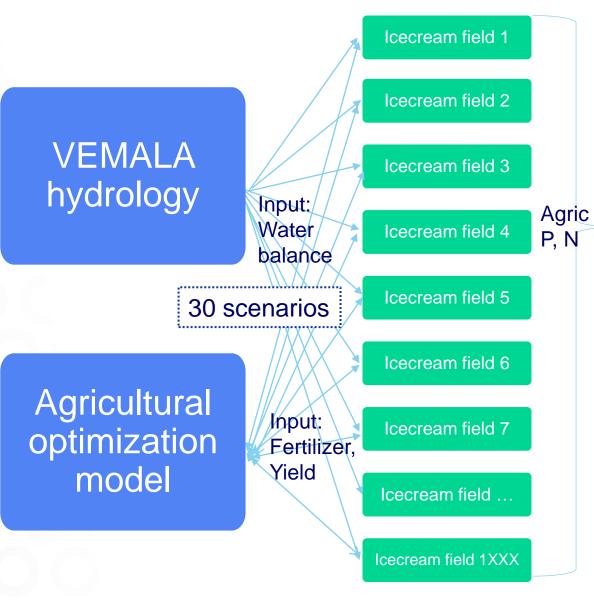


National-scale nutrient loading under climate change and agricultural mitigation measure scenarios

5.10.2023 Final Seminar

Markus Huttunen, Inese Huttunen, Marie Korppoo and Maiju Narikka Syke

Introduction


- National scale WSFS-Vemala model
- SSP&CC Scenarios for nutrient loading
 - Loading to inland water bodies and coastal waters
 - Comparision to N and P limits for good ecological state
 - Input for coastal and ecological models
 - To support sustainable placement of new activities

3

₩EMALA scenario modelling in BlueAdapt

BlueAdapt

VEMALA catchment model

Agricultural load

P, N

load

Forested areas

Point load

Scattered settlements

VEMALA river and lake model

P, N concentrations

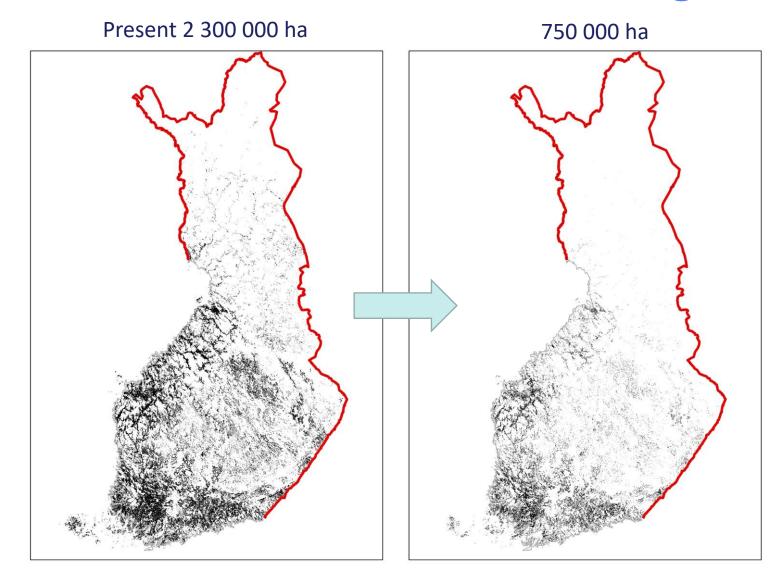
HRMS and coastal models

BlueAdapt

SCENARIO MEASURES:

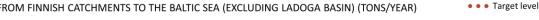
- SSP5 Current measures
 - Agriculture will continue as it is at present and other sources of pollution will continue at current levels.
- SSP2b Agricultural measures
 - gypsum treatment, refined fertilization and a maximum amount of winter vegetation cover, collector crop, structural lime/fiber treatment and sludge placement
- SSP2 Planned river basin management measures
 - In agriculture the planned number of measures will be introduced and the load from other sources will be reduced by the estimated impact of the planned measures
- SSP1 Plant-based diet

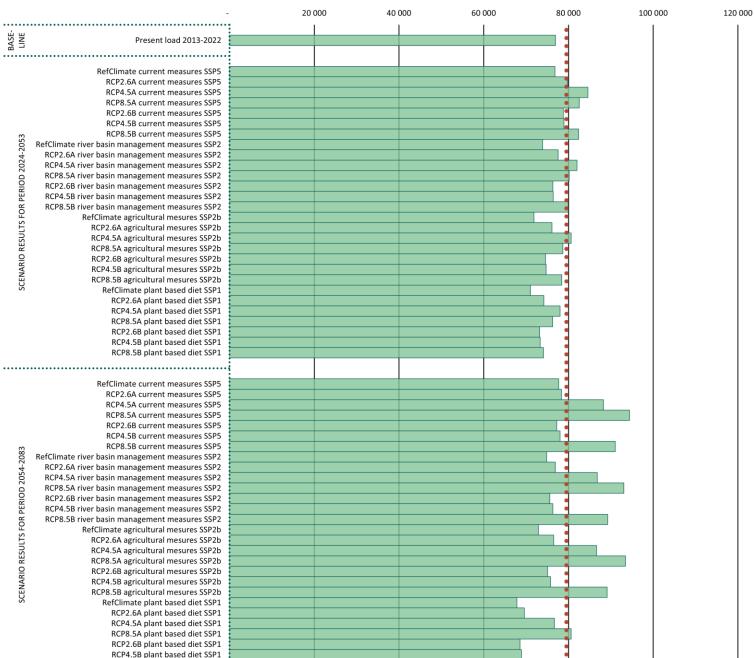
CLIMATE SCENARIOS:


- RefClimate: reference climate from years 1986-2015, no climate change
- RCP2.6A: low climate change scenario (MOHC-HadGEM2-ES)
- RCP4.5A: average climate change scenario (MOHC-HadGEM2-ES)
- RCP8.5A: strong climate change scenario (MOHC-HadGEM2-ES)
- RCP2.6B: low climate change scenario (MPI-M-MPI-ESM-LR)
- RCP4.5B: average climate change scenario (MPI-M-MPI-ESM-LR)
- RCP8.5B: strong climate change scenario (MPI-M-MPI-ESM-LR)

Plant based diet effect in nutrient loading

- 750 000 ha most fertile fields
- Mostly in South, South-Western and Western Finland

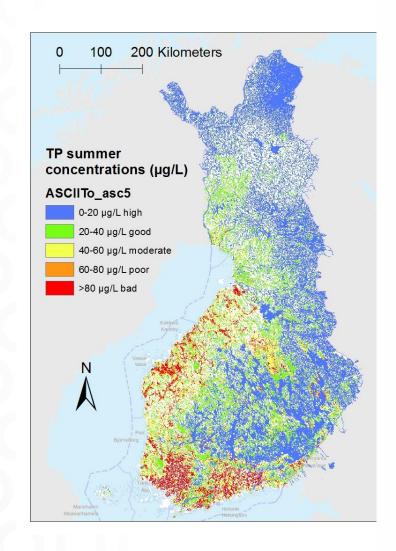


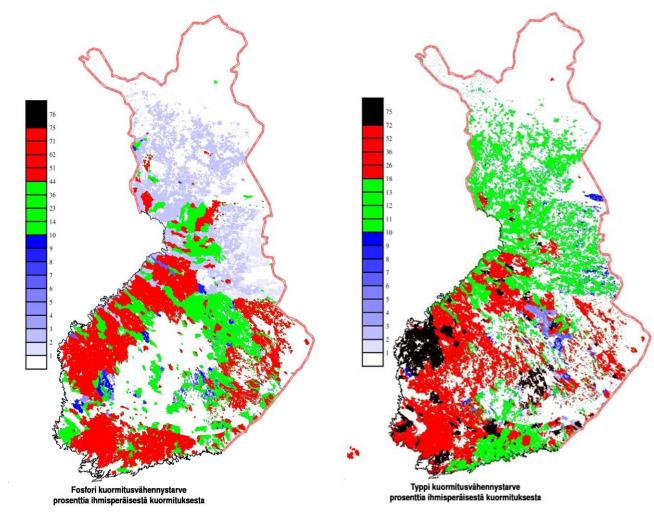


RCP8.5B plant based diet SSP1

BlueAdapt

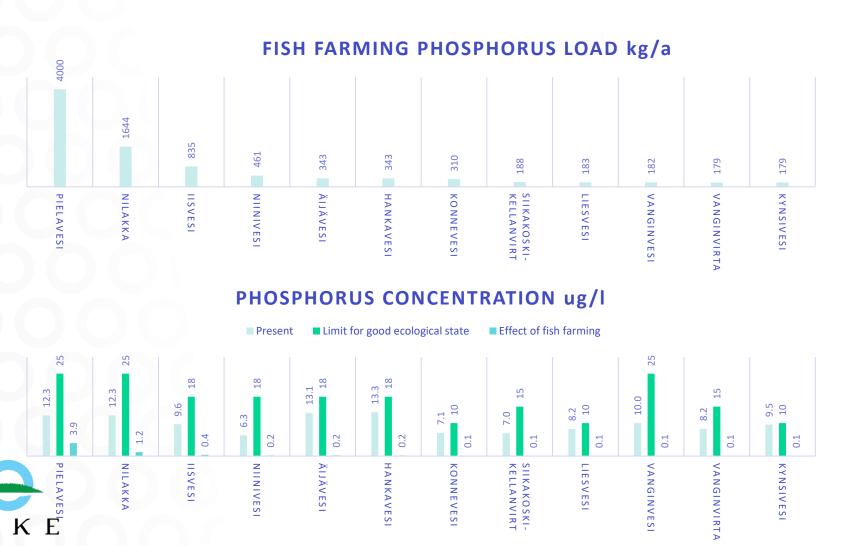
Needed reduction in loading from human sources (percent)

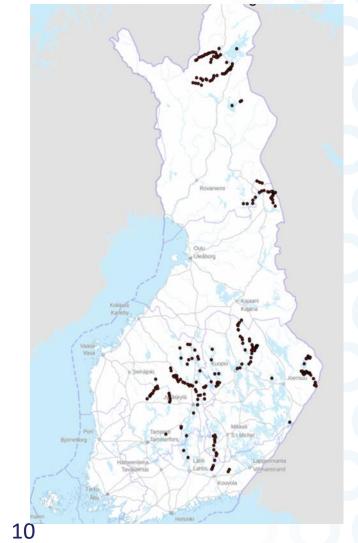

BlueAdapt


Phosphorus	2013-2022	RefClimate current measures SSP5	RCP2.6A current measures SSP5	RCP4.5A current measures SSP5	RCP8.5A current measures SSP5	RCP2.6B current measures r SSP5	RCP4.5B current measures SSP5		RefClimate river basin manageme nt measures SSP2		river basin ı	river basin ı	river basin ı		RCP8.5B river basin manageme a nt measures SSP2			RCP4.5A agricultura mesures SSP2b		RCP2.6B Il agricultura mesures SSP2b	al agricultural	agricultural	RefClimate plant based diet SSP1	plant based	l plant based ¡				
Suomenlahti	11	15	16	26	5 23	20	24	4 25	0	0	4	0	0	2	. 2	0	0) (0 ()	0 0	0	0	0	0	0	0	(0
Saaristomeri	2	14	24	33	3 29	20	23	3 26	0	0	0	0	0	0	0	0	0) (0 (5	0 0	C	0	0	0	0	0	() 0
Selkämeri	0	9	21	28	3 24	16	18	3 24	0	2	8	5	0	0	5	0	0) :	2 (5	0 0	C	0	0	0	0	0	Ç	0
Merenkurkku	7	11	25	25	5 23	10	13	3 21	7	21	21	19	5	9	17	0	11	1	.1 9	9	0 0	7	0	0	0	0	0	0	0
Perämeri	12	10	14	19	16	10	8	17	5	9	15	11	5	3	3 12	0	4	ļ <u></u>	9 :	5	0 0	6	0	0	0	0	0	() 0

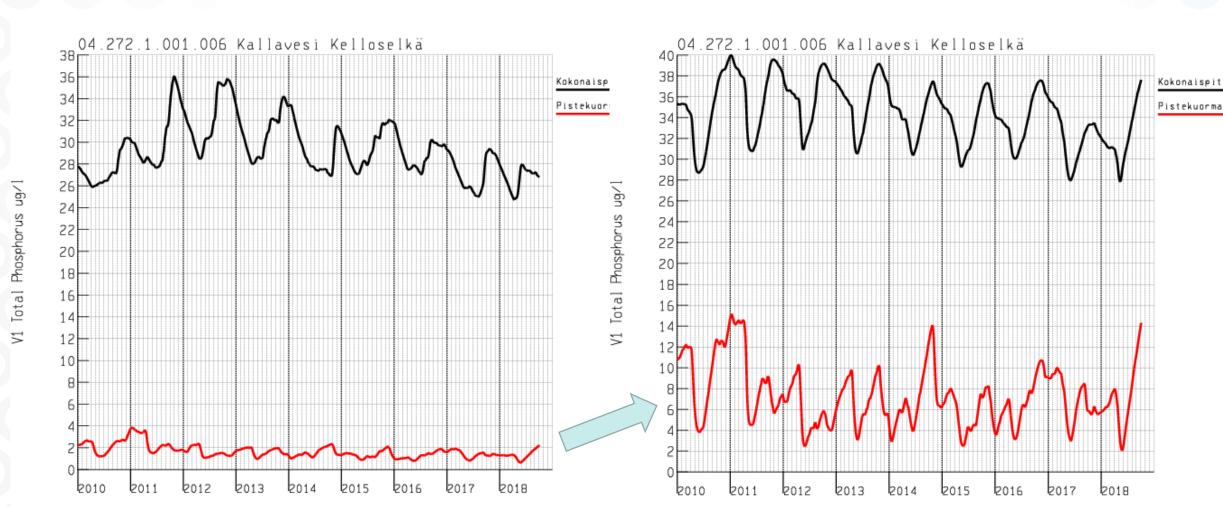
Nitrogen	2013-2022	RefClimate current measures SSP5	RCP2.6A current measures SSP5	RCP4.5A current measures SSP5	RCP8.5A current measures SSP5	RCP2.6B current measures SSP5	RCP4.5B current measures SSP5	RCP8.5B current measures	RefClimate river basin manageme nt measures SSP2	river basin manageme nt	river basin	river basin	river basin	river basin	RCP8.5B n river basin e manageme nt measures SSP2				RCP8.5A I agricultural mesures SSP2b		al agricultural	l agricultural	Kercilmate		ed plant based	d plant based	d plant based	d plant based	d plant based
Suomenlahti	4	2	5	5 17	7 13	8	8 12	2 14	0	0 0) 12	9	3	•	6 10	C	0	0 10) 6	, ,	0 4	-	8	0	0	5 ?	3 () :	2 2
Saaristomeri	0	0	0	0	0	0	0	, 0	0	0	0	0	0	, () 0	C	0) () 0	1	0 0	,	0	0	0) (5 (o () 0
Selkämeri	1	3	10	18	8 16	7	8	, 14	0	4	4 14	11	1	2	2 9	C	0	0 10) 6	1	0 (,	4	0	0	7	4 (ò () 0
Merenkurkku	0	0	0	0	0	0	, c) 0	0	0	c	0	0	, ,) 0	C	0) () 0	,	0 (,	0	0	0) (0 (0 (0
Perämeri	0	0	0	7	2	. 0	0	3	0	0	4	0	0	, ,) 0	C	0) :	0	j j	0 (<i>j</i>	0	0	0) (5	5) 0

Areal need to reduce loading from human sources Target levels for sea basins and inland water bodies BlueAdapt





Estimating the effect of fish farming



Plan for a bio product factory in Kuopio

WSFS-Vemala & LLR modelling

BlueAdapt

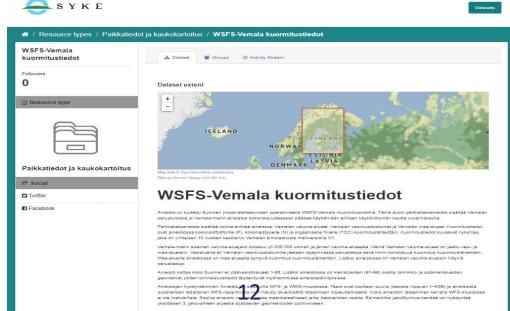
Science of The Total Environment

Volume 783, 20 August 2021, 146871

Agricultural nutrient loading under alternative climate, societal and manure recycling scenarios

Inese Huttunen ^a ⋈ ⋈, Kari Hyytiäinen ^b ⋈, Markus Huttunen ^a ⋈, Matti Sihvonen ^b ⋈, Noora Veijalainen ^a ⋈, Marie Korppoo ^a ⋈, Anna-Stiina Heiskanen ^a ⋈

AGRICULTURAL AND FOOD SCIENCE

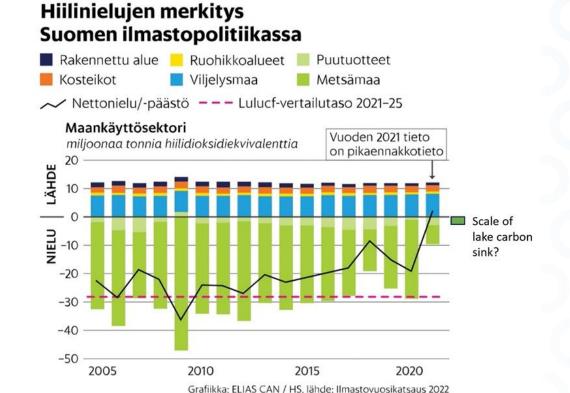

Agricultural and Food Science (2023) 32: xx-xx

https://doi.org/10.23986/afsci.125385

National-scale nitrogen loading from the Finnish agricultural fields has decreased since the 1990s

Inese Huttunen¹, Markus Huttunen¹, Tapio Salo², Pasi Mattila², Liisa Maanavilja^{2,3} and Tarja Silfver⁴

https://ckan.ymparisto.fi/en/dataset/ wsfs-vemala-kuormitustiedot



- Carbon
 - Loading from catchment, lake carbon sink and release to the atmosphere
 - Co-effect of SSP and CC scenarios
 - Effect of human actions on carbon sink in lakes?
 - BlueLakes project

- Latest AR6 climate input
 - Extremes
 - Dry periods

Conclusions

- National scale WSFS-Vemala nutrient loading model
 - SSP & CC scenarios
 - Input for coastal and ecological models
- To support:
 - Understanding the current state of waters and sources of nutrient loading
 - Finding means to reach, in the changing climate, nutrinet loading level that is within the limits for good ecological state in the waters
 - Sustainable placement of new activities
- Effect of CC and human actions on carbon loading and carbon sink in lakes is to be included

