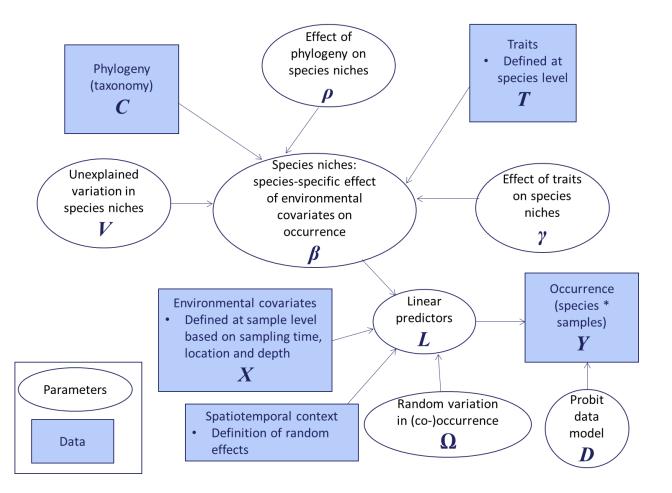
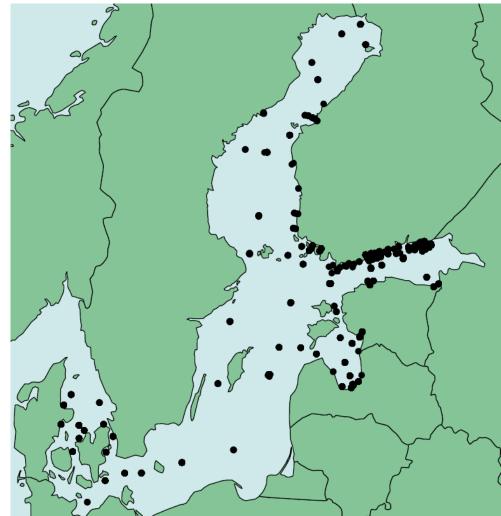


BlueAdapt Large-scale patterns in community composition and functioning of coastal plankton systems


Veera Norros / Syke

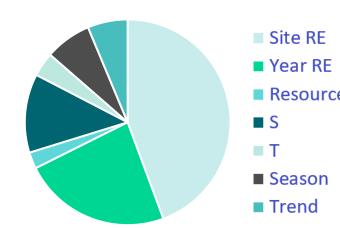
BlueAdapt final seminar 5.10.2023

Application of the Hierarchical Model of Species Communities (HMSC) to Baltic Sea phytoplankton at two scales

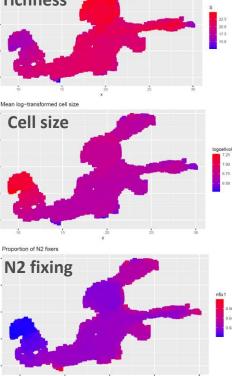

modified from Ovaskainen et al. 2017

- Whole Baltic Sea longterm change in the past
- Archipelago Sea significance of local land use in predicted responses to future scenarios

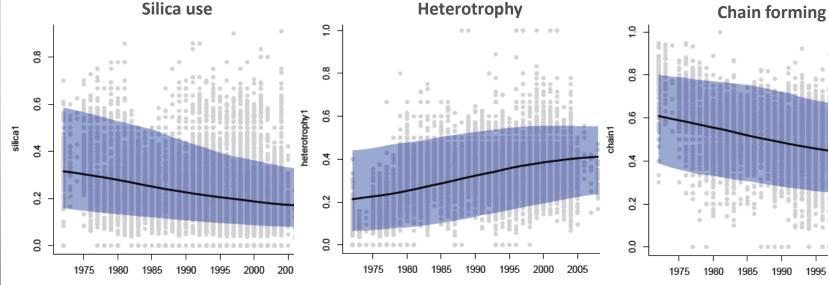
Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat / Copernicus Image IBCAO

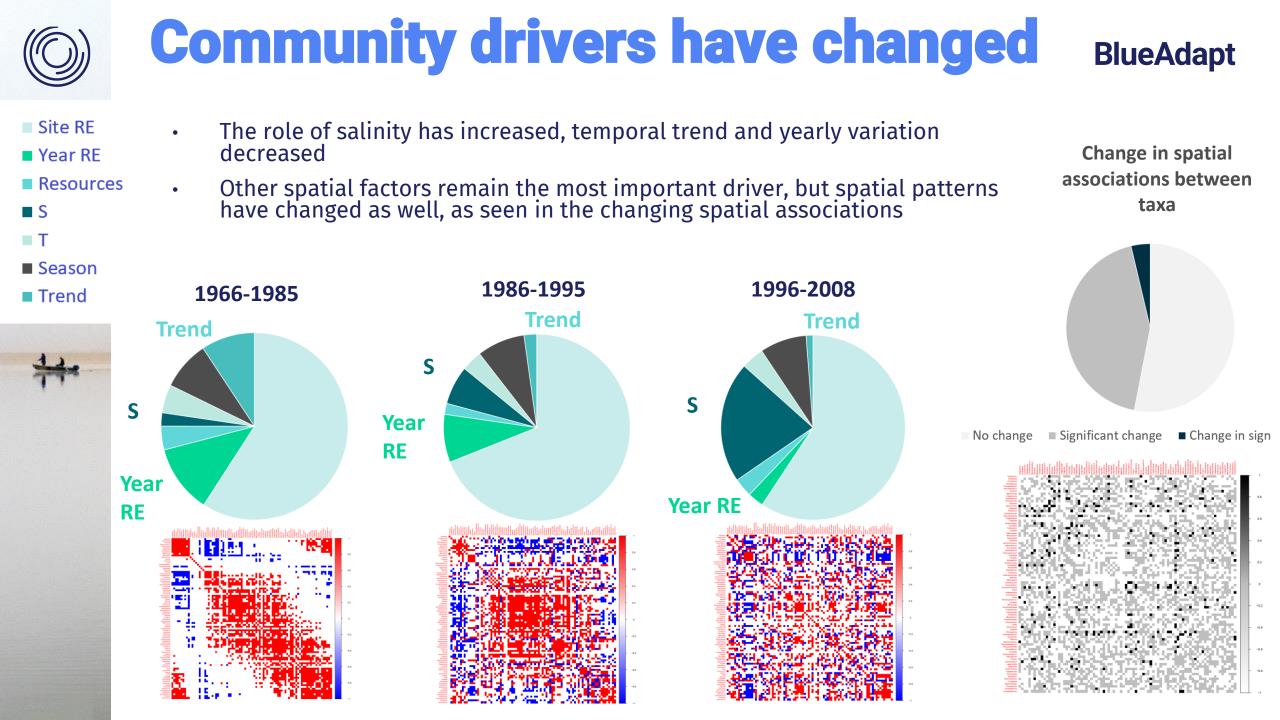

Case 1: Long-term phytoplankton BlueAdapt community change in the Baltic Sea

- Two approaches: 1) all data in one analysis, 2) data divided into three time periods to analyze change in drivers
- Long-term phytoplankton monitoring data (N=6878) from 1966-2008, shared by 9 institutions and harmonized by Olli et al. (2013)
- Matched environmental data: T, S, chlA, total N, total P
- Other fixed effects: year (trend) and season
- Random effects: **site** (subbasin, spatial) and **year**
- Binary functional trait data based on expert assignment (Klais et al. 2017)



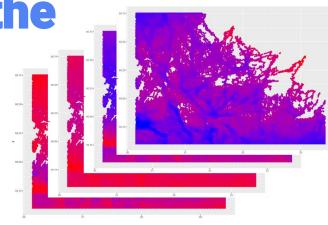
Change in taxonomic and functional BlueAdapt composition Taxon High unexplained spatial variance richness


- Significant community change: some genera have increased (43%), some decreased (31%)
- All environmental factors were significant but • random effects explained most of the variation
- Functional changes •

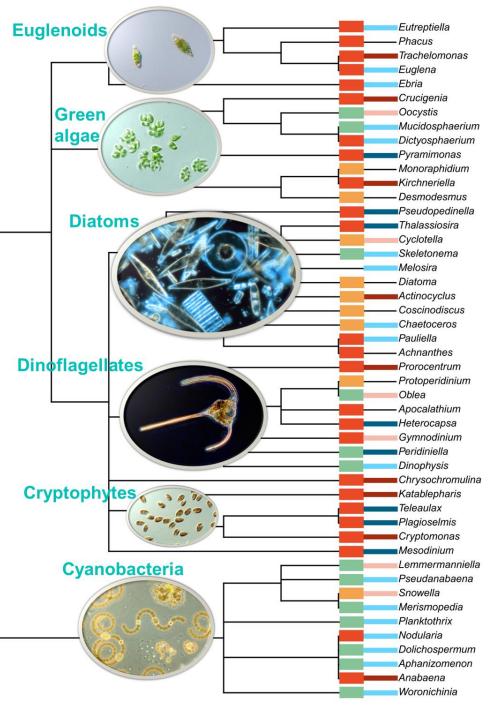


Fairly good model performance: AUC > 0.9 (> 0.8 in cross-validation)

vear

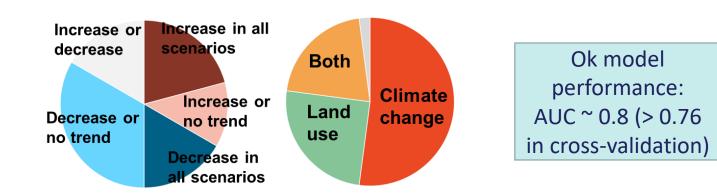

Case 2: Effect of local adaptation on the Archipelago Sea phytoplankon

- Mechanistic catchment (VEMALA) and biogeochemical (FICOS) models used to run future scenarios until 2100
- FICOS output used as input for HMSC: season (T sum), nutrients, T, S, depth, ChlA
- No random effects to maximize variation captured by input variables

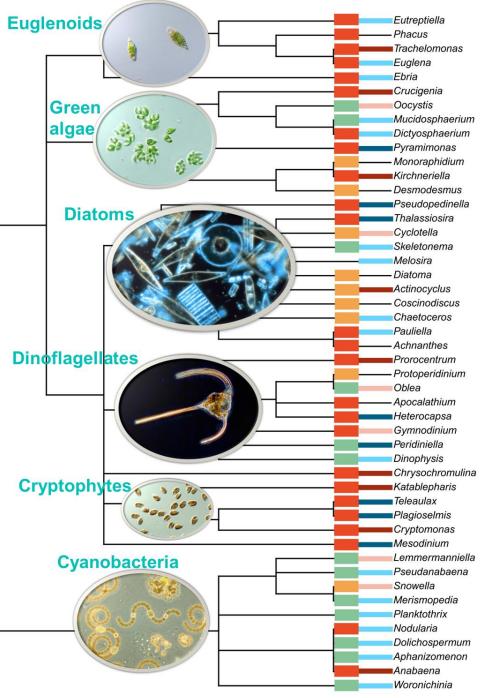

٠

٠

- HMSC fitted with phytoplankton monitoring data from 2006-2020 and input from validated FICOS hindcasts
- Average occurrence probability in different scenarios was calculated from predicted daily occurrence maps from 2051-2060 and 2091-2100



Scenarios – all combinations of:	Global, regional & national drivers	Processes in the drainage basin	Processes in the receiving water body	Ecological outcomes
 Three local Adaptive Strategies Plant-based agriculture Planned agricultural measures Present agriculture Three climate change scenarios RCP2.6 RCP4.5 RCP8.5 	SSPs Regional extensions of the Socioeconomic scenarios RCPs Downscaled Climate scenarios SPAS Local policies on land use, nutrient abatement, fisheries	WATERSHED MODEL (VEMALA) Soil processes All nutrient loads from land, waste water treatment and industrial outlets LOADS FROM OTHER REGIONS - Exchange of nutrients in marine areas (boundary loads) - Atmospheric deposition	COASTAL & MARINE MODEL (FICOS) 3D hydro-dynamics & biogeochemistry	ECOSPACEProcess model on interactions between species, lower and higher trophic levelsHMSCJoint Species Distribution Model (JSDM) PhytoplanktonHMSC-fish JSDM Fish stocks
Two alternative climate models	regulation, MPAs and OECMs			



The community will BlueAdapt change

- Different taxa show contrasting trends and responses to climate change and local land use.
- Two megatrends across scenarios:
 - Climate-induced changes are expected even in the most optimistic climate change scenario
 - Implementation of the Baltic Sea Action Plan is assumed to lead to load reductions at regional level → more taxa decreasing than increasing

Proportions of genera with a given trend or driver

Functional change and BlueAdapt the effectiveness of local measures

- Harmful genera are mostly predicted to decrease especially if local nutrient loads are reduced
 - Exceptions: *Prorocentrum* and *Chrysochromulina* are expected to increase due to climate change regardless of nutrient load reductions
- Inedible species mostly decreasing in response to nutrient load reduction, edible species either increasing or decreasing mostly due to climate change
 - NB: consistency with other ecological models not yet analysed!

→ Despite strong global and regional megatrends, local measures can be effective particularly in reducing local cyanobacterial blooms

Final remarks

- Using mechanistic but biologically coarse models as input for detailed statistical community models is a working solution
 - Feedback loops from community composition to ecosystem-level processes are not included – this is a major remaining knowledge gap
- Changing drivers and high unexplained variation in the whole Baltic Sea analysis indicate that future scenarios should be interpreted cautiously
- Consistency of phytoplankton scenarios with the results on the food web and commercial fisheries?
- To correctly detect and predict ecosystem change, models must be regularly recalibrated and predictions updated → adaptiveness
- The predicted improvement is largely dependent on the implementation of the BSAP measures – will they actually be as effective as assumed in reducing nutrient loads?

BlueAdapt

Warm thanks to all collaborators and funders!

www.blueadapt.fi 🕇 /Blueadapt 🈏 @BlueAdapt

<u>Baltic Sea HMSC crew:</u> Kalle Olli, Timo Tamminen, Tom Andersen, Sirpa Lehtinen, Riina Klais, Otso Ovaskainen

Archipelago Sea modelling crew:

Kari Hyytiäinen, Riikka Puntila-Dodd, Niina Kotamäki, Janne Ropponen, Markus Huttunen, Noora Veijalainen, Benjamin Weigel, Laura Uusitalo, Harri Kuosa, Elina Miettunen, Heikki Peltonen, Olli Malve, Susanna Jernberg

